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Adsorption of a macromolecule to a charged surface 

F W Wiegel 
Department of Applied Physics, Twente University of Technology, PO Box 2 17, Enschede, 
The Netherlands 
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Abstract. We investigate the adsorption of a charged macromolecule to a charged surface 
under the influence of a weak electrostatic attraction. The probability density P ( x ,  N )  to 
find the end point of a molecule with N monomer units at distance x from the surface is 
calculated analytically. In the limit N -+ CO this function shows a phase transition at a critical 
value (e,) of the adsorption energy in units of kBT: for % > Bc P(x,  N )  is peaked near the 
surface and the molecule is effectively adsorbed to the surface; for 0 < Bc the heat motion is 
strong enough to remove the molecule from the surface and P ( x ,  N )  is effectively constant 
throughout the whole available volume. We comment briefly upon a possible role of such 
conformational phase transitions in the regulation of cellular metabolism. 

1. Introduction 

The adsorption of a macromolecule to a surface has been studied by several authors. Of 
the more recent papers we should like to quote the study by Rubin (1965), who 
restricted the chain to the bonds of a lattice and who obtained analytic expressions for 
various statistical quantities of interest. In Rubin’s model the attractive forces between 
the molecule and the surface have a range which is comparable to the size of a monomer 
unit. The most interesting aspect of the analytic solutions which this author found is the 
existence of a discontinuity in the adsorption behaviour at some critical value (e,) of the 
adsorption energy in units kBT: for 0 > 8, the macromolecule exists in an adsorbed 
state; for 6 < 8, the heat motion is strong enough to tear it off the surface and shuttle it 
throughout the whole fluid. 

These results are all the more interesting because Di Marzio and Bishop (1974) 
showed that the presence of a surface sharpens the helix-coil transition both in 
polypeptides and in polynucleotides. 

In view of the unknown character of the forces which act in the living cell between 
biopolymers and cell membranes it is of interest to study a model for adsorption which is 
the opposite of Rubin’s model, in that the attractive force is long-ranged rather than 
short-ranged. As a candidate for such interactions we consider in this paper the case 
that the macromolecule carries a fixed charge on each repeating unit, and that the 
membrane carries fixed charges on its surface with a constant surface charge density. 
The electrostatic forces between the repeating units of the macromolecule will be 
neglected. For a weakly bound, very long macromolecule the adsorption problem can 
be solved in detail, as will be shown in Q 2. 
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2. Theory 

If the charge per repeating unit of the macromolecule is denoted by 4 and the surface 
charge density of the membrane by U, the energy of the electrostatic interaction 
between a repeating unit and a surface element of area d2S equals: 

d2 V = ( q u / ~ r )  exp(-kr) d2S. (1) 

Here E denotes the dielectric constant of the cell fluid and k-' is the Debye screening 
length, a measure for the distance beyond which the ions in the cell fluid have screened 
the electrostatic force. The distance between the two charges is denoted by r. Choosing 
a Cartesian system of coordinates in such a way that the surface coincides with the y, z 
plane the potential of the total force acting on a repeating unit is found by integrating 
over the whole surface: 

V(x) = d2 V =  ( 2 ~ 4 ~ / ~ k )  exp(-kx). ( 2 )  I 
The case of adsorption of course corresponds to negative values of qu. The energy of the 
electrostatic interactions between the repeating units will be negligible with respect to 
( 2 )  provided: 

q << u12, (3) 

where 1 denotes the linear dimension of a repeating unit. In the model under considera- 
tion we assume this order of magnitude estimation to hold. 

The molecule will be represented by N freely hinged links, each of length 1, with end 
points at ro, rl, . . . rN. The configuration sum for a molecule with both end points fixed 
equals: 

(4) 
Here P = (kBT)-' with kB denoting Boltzmann's constant and T the absolute tempera- 
ture. By first performing the integrations over rl, r2 . . . r N - 2  at fixed rN-l one finds the 
integral equation 

G(rN,N/ro, 0) = (4d2)-l  8 ( l t ' ~ - r ~ - i l - / )  eXp(-PV(rN))G(rN-l, N -  llro, 0) d3r~-1. 

( 5 )  

For N >> 1 the dependence of G on N will be smooth, so that N can be treated as a 
continuous variable. By expanding G(rNv1, N -  llro, 0) in a Taylor series around the 
point (rN, N) it is found that the integral equation can be replaced by the differential 
equation 

I 

where it was assumed that the distance over which G changes its value appreciably is 
very large as compared to the linear dimension of a repeating unit. For a weakly bound 
macromolecule one has: 

pv<< 1, (7) 
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and (6)  simplifies to 

This equation has to be solved under the boundary conditions that G vanishes if rN 

approaches either infinity or a hard wall, and under the initial condition 

lim G(rN, Nlro, 0) = S(rN-r0). (9) 
N & 0  

This implies that G is the Green function of the differential operator on the left-hand 
side of (8). 

When the explicit for= (2)  of the potential is substituted into (8) it is found that the 
equation separates. Hence G is the product of three functions, each of one variable 
only. Two of them have the form of the Green function of a one-dimensional 
free-diffusion equation, and one obeys a non-trivial equation. Using the bilinear 
expansion of a Green function in terms of the eigenfunctions of the corresponding 
differential operator one finds: 

G(rN, N(ro, 0) = ($mV12)-' exp{-3[(y~-yo)2+(zN-zo)2](2N12)-'} 

where 

The eigenfunctions are assumed to be orthogonal. The boundary conditions are that 
&,,(x) vanishes on the membrane at x = 0 and for some large positive value (L )  of x 
which corresponds to the other end of the cell: 

(12) 
The length L will of course be very large as compared to the two other fundamental 
lengths 1 and k-' in this problem, and can in many cases be put equal to infinity. In ( 1  1 )  
we also introduced the adsorption energy of a monomer at the membrane surface in 

4fl(O) = 4 n  (L )  = 0. 

Units Of kBT: 

8 =2tr l f fqI /k~Tk€.  ( 1 3 )  

S = (k1)-'(248)'I2 exp( -$kx);  f ( S )  =4(x)  (14) 

When the differential equation is transformed to the new variables 

its form simplifies to 

24 A A = -  
12k2 ($+; -&+ 1 + $ ) f ( S )  = 0; 

and the boundary conditions become: 

f(k-'1-*(248)'I2) = f(k-'l- '(248)'/2 exp( -$kL))  = 0. (16) 
The eigenvalues A of this equation can be negative or positive; both cases will be 
considered separately. 
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For negative values of A one has A=-v' ,  with v > O .  This transforms (15) into 
Bessel's equation. The eigenfunctions are bound states which decay exponentially at 
large positive values of x .  They have the form 

f ( S )  =AJ, , (S)+BJ-,(S) .  (17) 

The boundary conditions (16) lead to the eigenvalue equation: 

We shall study the solutions of the eigenvalue equation only in the limit L + 00 (for a 
finite value of L the analysis of the spectrum is much more complicated, but as in most 
realistic cases the length L will be very large compared to k-' there is no need to 
consider this case). For SI 1 0 one can use the limiting form of the Bessel functions for 
small arguments (Abramowitz and Stegun 1970, equation (9.1.7)): 

= ($sl)u/r(v + 1) (L +CO), 

( L  +CO). J-,(s') = (;sl)-u/r(i - v) 
Substituting into (18a) one finds that one has to solve 

In the limit L + a the right-hand side goes to zero exponentially for any fixed positive 
value of v. Hence in that limit one has to solve the eigenvalues from: 

J,[k-'f-'(248)'/2] = 0. (19) 

There will be as many bound states as there are positive real values of v such that the last 
equation holds. The ground state of the original eigenvalue problem (1 1) corresponds 
to the root of (19) with the largest value of Y. This remark enables us to infer the 
existence of a phase transition in this problem as follows. It is well known (see Watson 
1922, P 15.6, Jahnke and Emde 1945, figure 84) that the first positive root ju,l of the 
equationj,(x) = 0 increases with increasing v. Therefore a phase transition occurs when 
the dimensionless parameter k-'1-1(248)1'2 has the special value 

k- ' i - ' (24e~ ' /~  =io,' = 2.4048 . . . . 
For 8 < 8, equation (19) has no solutions; for 8 > 8, this equation has at least one 
solution. The temperature (T,) of the phase transition is found by substitution of (13) 
into the last equation: 

kBTc = 4 8 ~ / u q ~ / j ~ , ~ k ~ l ~ ~ .  (20) 
The phase transition is such that for T C T, at least one negative eigenvalue A. exists 
whereas for T >  T, all A, are positive. Hence for temperatures below the transition 
temperature the sum over the eigenfunctions in (10) will, for large vlalues of N, be 
dominated by the ground state: 
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The ground state itself follows by substitution of (14) into (17): 

+&) = A Jvo[ k-’l-’( 248) ”’ exp( - $kx )I. (22) 

The probability density to find the end point of the macromolecule at position x can be 
found by substituting (21) into (10) and integrating over y ,  and 2,: 

This function does not depend on N and is sharply peaked in a narrow layer of thickness 
of the order k-’ near to the membrane. Hence for T C  T, the attractive forces are strong 
enough to overcome the heat motion and the macromolecule is effectively adsorbed to 
the membrane. 

For T >  T, no bound states exist and all bfl are positive. The corresponding 
eigenfunctions have the form of plane waves: 

&,(x)  = C, sin(x/Z)(6Afl)”’+D, cos(x/Z)(6Afl)”’, (x >>k-’) (24) 

provided x is far removed from the membrane. Hence the probability density of the end 
point will not be localized near the membrane but will, for N>>1, be effectively 
constant: P(x,  N) = L-’. From a physical point of view this means that for T >  T, the 
heat motion is strong enough to overcome the attractive forces and to shuttle the 
molecule throughout the cell. 

3. Concluding remarks 

The adsorption behaviour of this model with long-range forces is qualitatively similar to 
the behaviour in Rubin’s models with short-range forces (Rubin 1965). Hence we can 
safely conclude that this type of behaviour is universal. 

In the living cell the phase transition in the adsorption behaviour is not induced by a 
change of temperature, but by a change in one or several of the variables U, q, k, E ,  

which according to (20) determine T,. The values of these variables depend on the ionic 
composition of the cell fluid and on the structure of the membrane, i.e. on the details of 
the cell’s metabolism. A slight change in the chemical inventory of the cell can push the 
system through its phase transition, thereby driving the macromolecule towards (or 
away from) the membrane. The biological activity of some biopolymers can be quite 
different, depending on whether the molecule is squeezed near to a membrane or floats 
feely in the bulk of the cell fluid (Di Marzio and Bishop 1974). In this way phase 
transitions of the type discussed in this paper could play a role in the regulation of 
cellular metabolism. 
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